On compactifications and the topological dynamics of definable groups
نویسندگان
چکیده
For G a group definable in some structure M , we define notions of “definable” compactification of G and “definable” action of G on a compact space X (definable G-flow), where the latter is under a definability of types assumption on M . We describe the universal definable compactification of G as G∗/(G∗)00 M and the universal definable G-ambit as the type space SG(M). We also point out the existence and uniqueness of “universal minimal definable G-flows”, and discuss issues of amenability and extreme amenability in this definable category, with a characterization of the latter. For the sake of completeness we also describe the universal (Bohr) compactification and universal G-ambit in model-theoretic terms, when G is a topological group (although it is essentially well-known).
منابع مشابه
Lattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملAbout remainders in compactifications of paratopological groups
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Caroli...
متن کاملUNIVERSAL COMPACTIFICATIONS OF TRANSFORMATION SEMIGROUPS
We extend the notion of semigroup compactification to the class of transformation semigroups, and determine the compactifications which are universal with respect to some topological properties.
متن کاملDefinable topological dynamics and real Lie groups
We investigate definable topological dynamics of groups definable in an o-minimal expansion of the field of reals. Assuming that a definable group G admits a model-theoretic analogue of Iwasawa decomposition, namely the compact-torsion-free decomposition G KH, we give a description of minimal subflows and the Ellis group of its universal definable flow SGpRq in terms of this decomposition. In p...
متن کاملTopological dynamics and definable groups
We give a commentary on Newelski’s suggestion or conjecture [8] that topological dynamics, in the sense of Ellis [3], applied to the action of a definable group G(M) on its type space SG(M), can explain, account for, or give rise to, the quotient G/G00, at least for suitable groups in NIP theories. We give a positive answer for measure-stable (or fsg) groups in NIP theories. As part of our anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 165 شماره
صفحات -
تاریخ انتشار 2014